SEMICONDUCTORS

characterized by:

1) a band gap $\left(E_{g}\right)<3.5 \mathrm{eV}$
2) increasing conductivity with increasing temperature

$$
n e^{2} \tau \quad \text { metals: } n \text { is } \sim \text { constant; } \tau \text { decreases with increasing } \top
$$

$$
\text { SCs: } n \propto e^{-E_{g} / 2 k_{B} T}
$$

sp³ SEMICONDUCTORS

- Four valence electrons per atom: Group IV (C, Si, Ge)
- III-V compounds (GaAs, InAs, InSb, GaN)
- II-VI compounds ($\mathrm{ZnS}, \mathrm{ZnSe}, \mathrm{CdSe}, \mathrm{HgTe}, \ldots$.)
\bullet V.B. \rightarrow C.B. is $p \rightarrow s$, hence allowed dipole transition

sp³ SEMICONDUCTORS

GaAs band structure

PARABOLIC BAND PICTURE

GaAs band structure

near valleys, bands can always be approximated as parabolas:

Parabolic Band Approximation

good approximation for SCs

- electrons near CBM
- holes near VBM

INTRINSIC and EXTRINSIC SEMICONDUCTORS

pure SC: intrinsic

- negligible impurities
- electrons thermally promoted across gap
- $n=p=n_{i}$
doped SC: extrinsic

- impurities form states in gap (e- donors or acceptors)
- electrons easily excited into conduction band from donor.
- $n>p \neq n_{i}$

DOPING IN SEMICONDUCTORS

Adding foreign atoms (dopants) of Group V or Group III to a Group IV semiconductor produces n-type or p-type material.

DONOR and ACCEPTOR LEVELS

Fig. 10 Measured ionization energies for varies impurities in (a) Si and (b) GaAs. Levels below the gap center are measured from E_{F}. Levels above the gap center are measured from E_{C}. Solid bars represent donor levels and hollow boxes represent acceptor levels. (After Refs. 29, 31,

ELECTRONIC CHARGE CARRIERS

Conduction band

- Electrons move amid empty states
- Negative charges drift against field

Valence band

- Electrons move by effective motion of positive holes
- Positive charges drift with field

Filled band

- All wavevectors fully occupied, no net motion
- Filled bands are inert

HOLES

Electrons are the only charge carriers. However, we may, whenever it is convenient, consider the current to be carried entirely by fictitious particles of positive charge that fill all those levels in the band that are unoccupied by electrons. The fictitious particles are called holes.

Applied field causes electrons and holes to move in opposite directions, but the current is in the same direction (opposite charges moving in opposite dir.)

It is convention to consider CB currents to be carried by electrons and VB currents to be carried by holes. Be careful not to mix the two concepts in a single band!

FERMI LEVEL SHIFTS WITH DOPING

The Fermi level moves up when electrons are added and down when electrons are removed, such that $f\left(E_{F}\right)=1 / 2$.

With sufficient doping, the Fermi level can move into a band, giving a degenerate semiconductor (metallic).

(b) E_{F} near midgap

632

EQUILIBRIUM CARRIER CONCENTRATION

equilibrium \equiv single temp, no applied fields (optical, electric, magnetic) simplest case: direct gap, intrinsic semiconductor ($n=p=n_{i}$)

concentration of electrons in CB:

$$
n(T)=\int_{E_{C}}^{\infty} g_{e}(E) f_{e}(E, T) d E
$$

[electrons] number of occupancy states at each dE
concentration of holes in VB:

$$
p(T)=\int_{-\infty}^{0} g_{e}(E)\left[1-f_{e}(E, T)\right] d E
$$

$$
n(T)=\int_{E_{C}}^{\infty} g_{e}(E) f_{e}(E, T) d E
$$

$$
p(T)=\int_{-\infty}^{0} g_{e}(E)\left[1-f_{e}(E, T)\right] d E
$$

in the parabolic approximation:

$$
\begin{gathered}
g_{e}(E)=\left.\frac{1}{2 \pi^{2}}\left(\frac{2 m_{e d s}^{*}}{\hbar^{2}}\right)^{3 / 2}\left(E-E_{g}\right)^{1 / 2}\left|\quad g_{e}(E)=\frac{1}{2 \pi^{2}}\left(\frac{2 m_{\text {hds }}^{*}}{\hbar^{2}}\right)^{3 / 2}\right| E\right|^{1 / 2} \quad E<0 \\
\text { for } E>E_{g} \mid \\
f_{e}(E)=\frac{1}{\exp \left[(E-\mu) / k_{B} T\right]+1}
\end{gathered}
$$

for $E_{g}>0.15 \mathrm{eV}$ and $|E-\mu| \gg k_{B} T$ the Fermi function reduces to the exponential Boltzmann distribution:

$$
f_{e}(E) \approx \exp \left[(\mu-E) / k_{B} T\right] \ll 1 \quad f_{h}(E) \approx \exp \left[(E-\mu) / k_{B} T\right] \ll 1
$$

substituting these forms of $g(E)$ and $f(E)$ into the integrals gives:

$$
\begin{aligned}
n(T) & =\frac{1}{2 \pi^{2}}\left(\frac{2 m_{e d s}^{*}}{\hbar^{2}}\right)^{3 / 2} \int_{E_{c}}^{E_{\max }} e^{(\mu-E) / k T}\left(E-E_{g}\right)^{1 / 2} d E \\
\text { and } \quad p(T) & =\frac{1}{2 \pi^{2}}\left(\frac{2 m_{h d s}^{*}}{\hbar^{2}}\right)^{3 / 2} \int_{-E_{\min }}^{0} e^{(E-\mu) / k T}|E|^{1 / 2} d E
\end{aligned}
$$

the results are:

$$
\begin{aligned}
& n(T)=2\left(\frac{m_{e d s}^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(E_{C}-\mu\right) / k T}=N_{C}(T) e^{-\left(E_{C}-\mu\right) / k T} \\
& p(T)=2\left(\frac{m_{h d s}^{*} k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(\mu-E_{V}\right) / k T}=N_{V}(T) e^{-\left(\mu-E_{V}\right) / k T}
\end{aligned}
$$

$$
\begin{aligned}
& n(T)=N_{C}(T) e^{-\left(E_{C}-\mu\right) / k T} \\
& p(T)=N_{V}(T) e^{-\left(\mu-E_{V}\right) / k T}
\end{aligned}
$$

N_{C} and N_{V} : effective densities of states at bottom of $C B$, top of VB

3D density of states

Effective density of states

$$
\begin{gathered}
E_{g}=E_{C}-E_{V} \\
\mu \approx E_{g} / 2
\end{gathered}
$$

$$
n(T)=N_{C}(T) e^{-\left[\left(E_{C}-\frac{E_{C}-E_{V}}{2}\right) / k T\right]}=N_{C}(T) e^{-\left(E_{g} / 2 k T\right)}=N_{C}(T) e^{\left(-\frac{E_{C}-E_{F}}{k T}\right)}
$$

The concentrations of both electrons and holes increase exponentially with temperature with an activation energy of $E_{g} / 2$.
*The product $n(T) p(T)$ is:

$$
\begin{aligned}
n(T) p(T) & =N_{C}(T) N_{V}(T) e^{-\left(E_{C}-\mu\right) / k T} e^{-\left(\mu-E_{V}\right) / k T} \\
& =N_{C}(T) N_{V}(T) e^{-E_{g} / k T}=n_{i}^{2}
\end{aligned}
$$

This product is independent of the position of the Fermi level. In other words, the product is a constant at a given temperature no matter the doping (n-type, intrinsic, or p-type).
it is an example of the LAW OF MASS ACTION

$$
\begin{aligned}
& \text { heat } \leftrightarrow e^{-}+h^{+} \\
& K_{e q}=[e][h]=n p
\end{aligned}
$$

For an intrinsic semiconductor:

$$
n_{i}(T)=p_{i}(T)=\sqrt{n_{i}(T) p_{i}(T)}=2\left(\frac{k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}\left(m_{e d s}^{*} m_{h d s}^{*}\right)^{3 / 4} e^{-E_{g} / 2 k T}
$$

FERMI LEVEL, INTRINSIC CASE

$$
\begin{aligned}
n=N_{C} e^{\left(-\frac{E_{C}-E_{F}}{k T}\right)} \Rightarrow E_{C}-E_{F}=k T \ln \left(\frac{N_{C}}{n}\right) \\
p=N_{V} e^{\left(-\frac{E_{F}-E_{V}}{k T}\right)} \Rightarrow E_{F}-E_{V}=k T \ln \left(\frac{N_{V}}{p}\right) \quad \begin{array}{r}
\text { subtract the } \\
\text { two equations }
\end{array} \\
n=\mathrm{p}
\end{aligned}
$$

The Fermi level lies very close to the middle of the bandgap.

Fig. 11 Schematic band diagram, density of states, Fermi-Dirac distribution, and carrier concentrations for (a) intrinsic, (b) n-type, and (c) p-type semiconductors at thermal equilibrium. Note that $p n=n_{i}^{2}$ for all three cases.

TEMPERATURE DEPENDENCE, INTRINSIC

TEMPERATURE DEPENDENCE, EXTRINSIC

Temperature (K)

Promotion of electrons from donor to CB results in donor ionization (temp dependent)
$D \rightarrow D^{+}+e^{-}$

Freezeout: Temperature is too small to ionize the donors (acceptors), i.e., $k_{B} T<E_{C}-E_{D}\left(k_{B} T<E_{D}-E_{V}\right)$.
Saturation: Most of the donors (acceptors) are ionzed.
Intrinsic: Temperature is so high that $n_{i}>$ doping density.

TEMPERATURE DEPENDENCE of n, p

Donor ionization occurs when electrons are promoted to conduction band: $D \rightarrow D^{+}+e^{-}$ Acceptor ionization occurs when electrons are promoted from the valence band to the acceptor state: $A+e^{-} \rightarrow A^{-}$

TEMPERATURE DEPENDENCE of MOBILITY

$$
\mathbf{v}_{\mathrm{drift}}=\mu \mathbf{E} ; \mu=e \tau / m^{*}
$$

mobility is the sum of scattering processes, often with one process dominant
$\mu=\left(\frac{1}{\mu_{\text {lattice }}}+\frac{1}{\mu_{\text {impurities }}}+\ldots\right)^{-1}$

- ionized impurity scattering

$$
\mu_{i} \propto T^{3 / 2}
$$

- acoustic phonon scattering

$$
\mu_{l} \propto T^{-3 / 2}
$$

other scattering mechanisms are possible (surface, defects)

RT MOBILITIES of SOME SEMICONDUCTORS

Compound	Structure	Bandgap (eV)	e^{-}mobility $\left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right)$	h^{*} mobility $(\mathrm{cm} / \mathrm{m}-\mathrm{s})$
Si	Diamond	$1.11(\mathrm{I})$	1,350	480
Ge	Diamond	$0.67(\mathrm{I})$	3,900	1,900
AIP	Sphalerite	$2.43(\mathrm{I})$	80	---
GaAs	Sphalerite	$1.43(\mathrm{D})$	8,500	400
InSb	Sphalerite	$0.18(\mathrm{D})$	100,000	1,700
AlAs	Sphalerite	$2.16(\mathrm{I})$	1,000	180
GaN	Wurtzite	$3.4(\mathrm{D})$	300	---

TEMPERATURE DEPENDENCE of SIGMA

 intrinsic case:$$
\begin{aligned}
& \sigma=e\left(n \mu_{e}+p \mu_{h}\right) \\
& \Rightarrow \rho=\frac{1}{\sigma} \propto e^{E_{g} / 2 k_{B} T}
\end{aligned}
$$

extrinsic (n-type) case:

$$
\sigma=n e \mu_{e}
$$

complex variation of n with T

HALL EFFECT to measure n, p

A conductor that carries a current in the presence of a transverse magnetic field develops a voltage across the sample normal to both.

force balance gives: $\quad V_{\text {Hall }}=\frac{1}{q n} \frac{I B}{t}$

DIRECT / INDIRECT GAP SEMICONDUCTORS

(a) Direct band gap:
C.B. minimum at $k=0$
(b) Indirect band gap
C.B. minimum at $k \neq 0$

- $k_{\text {photon }}=2 \pi / \lambda \sim 10^{7} \mathrm{~m}^{-1}$ negligible compared to B.Z. size $\pi / a \sim 10^{10} \mathrm{~m}^{-1}$
- Transitions appear as vertical lines on $E-k$ diagrams
- Phonon needed to conserve momentum for indirect gap materials
- Indirect absorption $2^{\text {nd }}$ order process, therefore low probability

GaAs band structure

- Direct gap at 1.5 eV
- Very important optoelectronic material
- Strong absorption for $h v>E_{\mathrm{g}}$

Germanium band structure

- Indirect gap at 0.66 eV
- Direct gap at 0.80 eV

ABSORPTION SPECTROSCOPY

- working range: $200-1 \mu \mathrm{~m}$
- scanning monochromator and infrared detector for longer λ

Direct versus indirect absorption

Implications for solar cells?

- Direct absorption is much stronger than indirect absorption
- Silicon has indirect gap at 1.1 eV
- GaAs has direct gap at 1.4 eV

BEHAVIOR NEAR ABSORPTION EDGE

General expression:

$$
\alpha \propto\left(h \nu-E_{g}\right)^{\gamma}
$$

FERMI'S GOLDEN RULE

The rate of an optical transition from a single initial state to a final state is given by:

Transition Rate for Single State

$$
\left.\Gamma_{i \rightarrow f}=\frac{2 \pi}{\hbar} E_{0}^{2}\left|\langle f| H^{\prime}\right| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}-h v\right)
$$

square of matrix element
(strength of coupling)
resonance condition (energy conservation)

- $\mathrm{E}_{0}{ }^{2}$ is light intensity
- hv is the photon energy
- in the dipole approximation, $\mathrm{H}^{\prime}=-e r \cdot E$
- derived w/ time-dependent perturbation theory

$$
\langle f| H^{\prime}|i\rangle=\int \psi_{f}^{*} H^{\prime} \psi_{i} d \tau
$$

Transition Rate for Given Wavelength

$$
\begin{aligned}
\Gamma=\sum_{f, i} \Gamma_{i \rightarrow f} & \left.=\sum_{f, i} \frac{2 \pi}{\hbar} E_{0}^{2}\left|\langle f| H^{\prime}\right| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}-h v\right) \\
& \left.\approx \frac{2 \pi}{\hbar} E_{0}^{2} \right\rvert\,\langle f| H^{\prime}|i\rangle \sum_{f, i} \delta\left(E_{f}-E_{i}-h v\right)
\end{aligned}
$$

Let's assume the state f and i are conduction and valence band states. Then $<\mathrm{f}\left|\mathrm{H}^{\prime}\right| \mathrm{i}>\rightarrow<\mathrm{c}\left|\mathrm{H}^{\prime}\right| \mathrm{v}>$. We can define the joint density of states as

$$
\rho_{C V}(h v)=\frac{2}{8 \pi^{3}} \int \delta\left(E_{C}(k)-E_{V}(k)-h v\right) d^{3} k
$$

- vertical (direct) transitions only

$$
\Gamma=\frac{2 \pi}{\hbar} E_{0}^{2}\left|\mathrm{H}_{C V}^{\prime}\right|^{2} \rho_{C V}\left(E_{C}(k)-E_{V}(k)-h v\right)
$$

Empty $E_{C}(k)=E_{C}+\frac{\hbar^{2} k^{2}}{2 m_{e}^{*}}$

$$
E_{C}(k)-E_{V}(k)=E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{r}^{*}}
$$

Filled

$$
E_{C}(k)=E_{C}+\frac{\hbar^{2} k^{2}}{2 m_{e}^{*}}
$$

$$
\rho_{C V}(h v)=\frac{2}{8 \pi^{3}} \int \delta\left(E_{C}(k)-E_{V}(k)-h v\right) d^{3} k \quad \text { electron-hole pair (EHP) }
$$

$$
=\frac{2}{8 \pi^{3}} \int \delta\left(E_{g}+\frac{\hbar^{2} k^{2}}{2 m_{r}^{*}}-h v\right) d^{3} k
$$

$$
\text { Let } X=E_{g}+E-h v \quad E=\frac{\hbar^{2} k^{2}}{2 m_{r}^{*}}
$$

integral vanishes unless $X=0 \Rightarrow E=h v-E_{g}$
parabolic bands free electron DOS:

$$
\rho_{C V}(h v)=\frac{1}{2 \pi^{2}}\left(\frac{2 m_{r}^{*}}{\hbar^{2}}\right)^{3 / 2}\left(h v-E_{g}\right)^{1 / 2}
$$

InAs band edge absorption

InAs is a direct gap
III-V semiconductor with $E_{\mathrm{g}}=0.35 \mathrm{eV}$
$h \nu<E_{\mathrm{g}}: \quad \alpha=0$
$h v>E_{\mathrm{g}}:$
$\alpha \propto\left(h v-\mathrm{E}_{\mathrm{g}}\right)^{1 / 2}$

OPTICAL ABSORPTION EDGES

for allowed transitions in the parabolic approximation:

Direct gap: $\quad \alpha(v)=A_{d}\left(2 m_{r}^{*}\right)^{3 / 2}\left(h v-E_{g}\right)^{1 / 2}$

Indirect gap:

$$
\alpha(v)=A_{i}\left(h v-E_{g} \pm E_{\text {phonon }}\right)^{2}
$$

the prefactors A_{d} and A_{i} contain the matrix elements and fundamental constants

OPTICAL SPECTRA

SEMICONDUCTOR BANDGAPS

Bandgaps (in eV) of some semiconductors

Tetrahedrally bonded materials				
V	C	Si	Ge	$\alpha-\mathrm{Sn}$
C	5.5i,D			
Si	2.6i,Z/W	1.1i,D	0.7-1.1i	
Ge		0.7-1.1	$0.74 \mathrm{i}, \mathrm{D}$	
$\alpha-\mathrm{Sn}$				0.09,D
III-V	N	P	As	Sb
B	3.8,W	2.0i,Z	1.5i,Z	
Al	5.9,W	2.5,Z	2.2,Z	1.7,Z
Ga	3.5,W	2.4i,Z	1.5,Z	0.81,Z
In	2,4, य/	1.4,Z	0.41, Z	0.24,Z
II-VI	O	S	Se	Te
Zn	3.4,W	3.6,Z/W	2.8,Z/W	2.4,Z
Cd	1.3i,R	2.5,Z/W	1.8,Z/W	1.6,Z
Hg	2.2,O/Rh	2.3,T	-.06,Z	-.3,Z
I-VII	F	Cl	Br	I
Cu		3.4,Z	3.1,Z	3.1,Z
Ag	2.8i,R	3.2i,R	2.7i,R	3.0 W

i: Indirect gap
D: Diamond
Z: Zinc Blende
W: Wurtzite
R: Rocksalt
O: Orthorhombic
Rh: Rhombohedral
T: Trigonal
OR: Orthorhombic
distorted rocksalt
M: Monoclinic

NON-TETRAHEDRAL BONDED MATERIALS
IV-VI compounds

IV-VI O	S	Se	Te	
Ge		$1.7, \mathrm{OR}$	$1.1, \mathrm{OR}$	$0.15, \mathrm{R}$
Sn		$1.1, \mathrm{OR}$	$0.9, \mathrm{OR}$	$2.1, \mathrm{R}$
Pb	$2.0, \mathrm{i}$	$0.29, \mathrm{R}$	$0.15, \mathrm{R}$	$0.19, \mathrm{R}$
Group VI elements				
VI	S	Se	Te	
	$3.6, \mathrm{O}$	$1.9 \mathrm{i}, \mathrm{T}$	$0.33, \mathrm{~T}$	
		$2.5, \mathrm{M}$		

Group V elements

V	P	As	Sb	Bi
	$.33, \mathrm{O}$	$.17, \mathrm{Rh}$.10	.015

EXCITONS

- The annihilation of a photon in exciting an electron from the valence band to the conduction band in a semiconductor can be written as an equation: $h v \rightarrow e^{-}+h^{+}$
- Since there is a Coulomb attraction between the electron and hole, the photon energy required is lower than the band gap by this attraction (giving bound states).
- To correctly calculate the absorption coefficient we have to introduce a two-particle state consisting of an electron attracted to a hole, known as an exciton (a quasiparticle).

WANNIER and FRENKEL EXCITONS

Free (Wannier)
radius >> a
small binding energy
moves freely through crystal
SCs of large dielectric constant

Tightly-bound (Frenkel) radius $\sim a$
large binding energy localized on one lattice site solids of small dielectric constant

- Excitons represent the elementary excitation of a semiconductor. In the ground state the semiconductor has only filled or empty bands. The simplest excitation is to excite one electron from a filled band to an empty band, so creating an electron and a hole
- Excitons are neutral overall but carry an electric dipole moment and therefore can be excited by either a photon or an electron

HYDROGENIC MODEL OF EXCITONS

Bohr atom picture, modified with effective mass and dielectric constant of crystal

Hydrogen Atom:

Circular orbit: centripetal force $=$ Coulombic force

$$
\frac{m_{e} v^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}}
$$

Angular momentum: $m_{e} v r=n \hbar$

$$
\begin{aligned}
E & =\frac{1}{2} m_{e} v^{2}+\left(-\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right) \\
& =\frac{1}{2}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} r}\right)-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \\
& =-\frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} r}
\end{aligned}
$$

$$
\begin{gathered}
E_{n}=-\frac{m_{e} e^{4}}{2\left(16 \pi^{2} \varepsilon_{0}^{2}\right) \hbar^{2} n^{2}}=-\frac{R}{n^{2}} \\
R(\text { Rydberg })=13.606 \mathrm{eV}
\end{gathered}
$$

HYDROGENIC MODEL OF EXCITONS

Excitons: 1. Use dielectric constant of crystal

$$
\begin{gathered}
U(r)=-\frac{e^{2}}{4 \pi \varepsilon \varepsilon \varepsilon_{0} r} \quad \text { 2. Use effective reduced mass } \\
\frac{1}{m_{r}^{*}}=\frac{1}{m_{e}^{*}}+\frac{1}{m_{h}^{*}}
\end{gathered}
$$

Exciton Bohr Radius:

$$
\begin{gathered}
r_{n}=\frac{4 \pi \varepsilon \varepsilon_{0} n^{2} \hbar^{2}}{m_{r}^{*} e^{2}}=\frac{n^{2} \varepsilon m_{e}}{m_{r}^{*}} a_{0} \\
r_{e x}=\frac{\varepsilon m_{e}}{m_{r}^{*}} 0.529 \mathrm{~A}
\end{gathered}
$$

Binding Energy:

$$
E_{n}=-\left(\frac{m_{r}^{*}}{m_{e} \varepsilon^{2}}\right) \frac{R}{n^{2}}=\frac{R_{X}}{n^{2}}
$$

TOTAL EXCITONIC ENERGY

if referenced to the top of the valence band:

$$
\begin{gathered}
E_{n l m}(K)=E_{g}+\frac{\hbar^{2} K^{2}}{2 M}-\left(\frac{m_{r}^{*}}{m_{e} \varepsilon^{2}}\right) \frac{R}{n^{2}} \\
\end{gathered}
$$

exciton kinetic energy
binding energy
(translational motion of neutral quasiparticle)

Exciton Parameters for Several SCs

Semiconductor	$\mathrm{E}_{g}(\mathrm{eV})$	$\varepsilon(0)$	m_{r}^{*} / m_{e} $\left(m_{e}^{*} / m_{e} ; m_{h}^{*} / m_{e}\right)$	$\mathrm{E}_{\mathrm{B}}(\mathrm{meV})$	$\mathrm{r}_{\mathrm{ex}}(\mathrm{nm})$
Si	1.11	11.8	0.190	18.6	3.28
Ge	0.67	16	0.132	7.01	6.41
GaAs	1.42	13.2	0.0616 $(0.067,0.76)$	4.81	11.3
InSb	0.163	17.7	0.0135	0.586	69.4
CdSe	1.74		$(0.13,0.45)$	15	5.2
Bi	0		0.001	small	>50
ZnO	3.4		$(0.27, ?)$	59	3
GaN	3.4		$(0.19,0.60)$	25	11

FREE EXCITON ABSORPTION

$R_{\mathrm{X}}=$ exciton binding energy

- Hydrogenic series of lines satisfying :
$h v=E_{\mathrm{g}}-R_{\mathrm{X}} / \mathrm{n}^{2}$
- enhanced absorption for $h v>E_{\mathrm{g}}$
- only observed when
$T \leq\left(R_{\mathrm{X}} / k_{\mathrm{B}}\right)$

EXCITONS in BULK GaAs

- standard purity sample
- $T=21 \mathrm{~K}-294 \mathrm{~K}$

Photon energy (eV)

- ultra pure sample
- $T=1.2 \mathrm{~K}$
- $R_{\mathrm{X}}=4.2 \mathrm{meV}$

FRENKEL EXCITONS

Alkali halides

$\begin{array}{lcc} & E_{\mathrm{g}}(\mathrm{eV}) & R_{\mathrm{X}}(\mathrm{eV}) \\ \mathrm{NaCl} & 8.8 & 0.9 \\ \mathrm{LiF} & 13.7 & 1.9\end{array}$

Organic crystals

Also: Rare gas crystals (solid Ne, Ar, Kr, Xe)

QUANTUM CONFINEMENT IN NANOSTRUCTURES

Materials with at least one dimension on the scale of the exciton diameter are said to be quantum confined. The electronic wavefunction, energy levels, and DOS will depend on the dimension(s).

"Particle in a box" model - energy level separation increases \rightarrow discrete states
bulk gap
1D confinement

dot: $\quad E_{g}\left(L_{x}, L_{y}, L_{z}\right)=\underset{\hat{\underbrace{}}_{g 0}+\frac{h^{2}}{8 m_{r}^{*}}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)}{\text { bulk gap }}$

3D confinement

assumptions: parabolic bands, independent electrons, infinite barriers

TABLE 11.5 Properties of Electrons in Solids of Reduced Dimensionality

	Dimensionality			
	$\begin{gathered} d=0 \\ \text { (Quantum Dot) } \end{gathered}$	$\begin{gathered} d=1 \\ \text { (Quantum Wire) } \end{gathered}$	$\begin{gathered} d=2 \\ \text { (Quantum Well) } \end{gathered}$	$\begin{aligned} & d=3 \\ & \text { (Bulk) } \end{aligned}$
$\psi_{\mathbf{k}}(\mathbf{r})^{a}$	$A \sin k_{x} x\left(\sin k_{y} y\right)\left(\sin k_{z} z\right)$	$A \sin k_{x} x\left(\sin k_{y} y\right) e^{i k_{z} z}$	$A\left(\sin k_{x} x\right) e^{i\left(k_{y} y+k_{z} z\right)}$	$A e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)}$
$\begin{aligned} & E(\mathbf{k})^{b}=E\left(k_{x}\right)+ \\ & \quad E\left(k_{y}\right)+E\left(k_{z}\right) ; n_{x} \\ & n_{y}, n_{z}=1,2,3, \ldots \end{aligned}$	$\frac{h^{2}}{8 m_{e}^{*}}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right)$	$\frac{h^{2}}{8 m_{e}^{*}}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}\right)+\frac{\hbar^{2} k_{z}^{2}}{2 m_{e}^{*}}$	$\frac{h^{2} n_{x}^{2}}{8 m_{e}^{*} L_{x}^{2}}+\frac{\hbar^{2}\left(k_{y}^{2}+k_{z}^{2}\right)}{2 m_{e}^{*}}$	$\frac{\hbar^{2}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)}{2 m_{e}^{*}}$
$\rho_{e}(E)^{b, c}$	Discrete states	$\frac{\sqrt{2 m_{e}^{*}}}{\pi \hbar L_{x} L_{y}} E^{-1 / 2}$	$\frac{m_{e}^{*}}{\pi \hbar^{2} L_{x}}$	$\frac{1}{2 \pi^{2}}\left(\frac{2 m_{e}^{*}}{\hbar^{2}}\right)^{3 / 2} E^{1 / 2}$
$k_{F}{ }^{\text {d }}$	- ${ }^{e}$	$\frac{\pi n L_{x} L_{y}}{2}$	$\sqrt{2 \pi n L_{x}}$	$\left(3 \pi^{2} n\right)^{1 / 3}$

[^0]InAs nanocrystals (Banin group)

CdSe nanocrystals (Bawendi group)

Photoluminescence spectroscopy

sample in cryostat

Photoluminescence (PL) spectroscopy

- fixed frequency laser, measure spectrum by scanning spectrometer

PL excitation spectroscopy (PLE)

- detect at peak emission, vary laser frequency
- effectively measures absorption

Time-resolved PL spectroscopy

- short pulse laser + fast detector
- measure lifetimes, relaxation processes

Photoluminescence

- Excite using laser with photon energy $>E_{g}$
- electrons and holes relax to the bottom of their bands
- thermal distributions formed according to statistical mechanics
- emission from E_{g} to top of carrier distributions

Direct gap materials

conduction band

valence band

GaN
$T=4 \mathrm{~K}, E_{\mathrm{g}}=3.50 \mathrm{eV}$

Energy (eV)

- Strong emission at the band gap
- most III-V and II-VI semiconductors
- linewidth $\geq k_{\mathrm{B}} \mathrm{T}$

Indirect gap materials

- Low emission probability (2nd order process)
- Long radiative lifetime \Rightarrow low radiative quantum efficiency
- diamond, silicon, germanium, AlAs

Classical (Boltzmann)Statistics

GaAs
$T=100 \mathrm{~K}$
$k_{\mathrm{B}} T=8.6 \mathrm{meV}$
$E_{\mathrm{g}}=1.501 \mathrm{eV}$
Fermi's golden rule
Rate $\propto|M|^{2} \rho(h \nu)$

- Boltzmann statistics: $f(E) \propto \exp \left(-E / k_{\mathrm{B}} T\right) \quad$ (occupancy factors)
- $I(E) \propto$ Density of states $\times f_{\mathrm{e}}(E) f_{\mathrm{h}}(E) \propto\left(h \nu-E_{g}\right)^{1 / 2} \mathrm{e}^{-h \nu / k_{B} T}$
- PL rises sharply at E_{g}, then decays exponentially. Linewidth $\sim k_{\mathrm{B}} T$

BUILDING BLOCKS OF SEMICONDUCTOR DEVICES

- p-n junctions
- metal-semiconductor junctions
- metal-insulator-semiconductor (MIS) capacitors

Reading:
AM Ch. 29

THE MOSFET

(metal-oxide-semiconductor field-effect transistor)

amplification, switching, logic

BASIC EQUATIONS FOR DEVICE PHYSICS

in 1D:

Poisson's Equation: $-\frac{d^{2} \psi}{d x^{2}}=\frac{d \mathcal{G}}{d x}=\frac{\rho}{\varepsilon_{s}}=\frac{q}{\varepsilon_{s}}\left[p+N_{D}^{+}-n-N_{A}^{-}\right]$

Drift-Diffusion
Equations:

$$
\begin{aligned}
& J_{n}=q \mu_{n} n \mathscr{E}+q D_{n} \frac{d n}{d x} \\
& J_{p}=q \mu_{p} p \mathcal{E}-q D_{p} \frac{d p}{d x}
\end{aligned}
$$

$\begin{aligned} & \text { Continuity } \\ & \text { Equations: }\end{aligned} \quad \frac{\partial n}{\partial t}=G_{n}-U_{n}+\frac{\nabla J_{n}}{q} \quad \frac{\partial p}{\partial t}=G_{p}-U_{p}-\frac{\nabla J_{p}}{q}$

CONTINUITY

$$
\frac{\partial n}{\partial t}=G_{n}-U_{n}+\frac{\nabla J_{n}}{q}
$$

THE PN (HOMO)JUNCTION

B. Van Zeghbroeck, 2011.

ABRUPT PN JUNCTIONS

$$
-\frac{d^{2} \psi}{d x^{2}}=\frac{d \mathcal{G}}{d x}=\frac{\rho}{\varepsilon_{s}}
$$

$$
\begin{aligned}
& \mathscr{\mathcal { G }}(x)=\varepsilon_{s} \int_{-W_{D_{p}}}^{W_{D_{n}}} \rho(x) d x \\
& \psi(x)=-\int_{-W_{D_{p}}}^{\infty} \mathcal{E}(x) d x \\
& E(x)=-q \psi(x)
\end{aligned}
$$

LINEARLY-GRADED PN JUNCTIONS

more realistic doping profile, same basic result and device physics

SIMPLE DERIVATION OF CURRENT-VOLTAGE CHARACTERISTICS

two electron currents:

1) generation current ($J_{\text {gen,e }}$)

- electrons from p to n side

2) recombination current ($\mathrm{J}_{\text {rec, },}$)

- electrons from n to p side

$$
J_{e}^{r e c} \propto e^{-q(\phi-V) / k T}
$$

at equilibrium $(\mathrm{V}=0)$: $J_{e}^{\text {rec }}=J_{e}^{\text {gen }}=e^{-q \phi / k T}$
so at any voltage $\mathrm{V}: J_{e}^{\text {rec }}=J_{e}^{\text {gen }} e^{q V / k T}$
total electron current: $J_{e}=J_{e}^{\text {rec }}-J_{e}^{\text {gen }}=J_{e}^{\text {gen }}\left(e^{q V / k T}-1\right)$
total current $(e+h): J=J_{e}+J_{h}=\left(J_{e}^{\text {gen }}+J_{h}^{\text {gen }}\right)\left(e^{q V / k T}-1\right)$

DIODE AT EQUILIBRIUM

Shockley ideal diode equation (1949):

$$
J=J_{0}\left[\exp \left(\frac{q V}{n k T}\right)-1\right]
$$

rectification: current flows preferentially in one direction

$$
\begin{aligned}
& J_{\text {diff }, n}=J_{\text {drift,n }} \\
& J_{\text {diff }, p}=J_{\text {drift }, p}
\end{aligned}
$$

Zero net current

REVERSE BIAS

$$
J=J_{0}\left[\exp \left(\frac{q V}{n k T}\right)-1\right]
$$

V < 0 (reverse bias)

$J_{\text {diff }, n}<J_{\text {driff }, n}$
$J_{\text {diff }, p}<J_{\text {drift }, p}$

FORWARD BIAS

$$
J=J_{0}\left[\exp \left(\frac{q V}{n k T}\right)-1\right]
$$

$V>0$ (forward bias)

Only the diffusion current changes significantly with bias. Diffusion dominates in forward bias.

DETAILED DERIVATION OF CURRENT-VOLTAGE CHARACTERISTICS

derivation of the Shockley ideal diode equation (1949):
at equilibrium: $n=n_{i} \exp \left(\frac{E_{F}-E_{i}}{k T}\right) \quad p=n_{i} \exp \left(\frac{E_{i}-E_{F}}{k T}\right) \quad p n=n_{i}^{2}$
with bias V: $\quad n \equiv n_{i} \exp \left(\frac{E_{F n}-E_{i}}{k T}\right) \quad p \equiv n_{i} \exp \left(\frac{E_{i}-E_{F p}}{k T}\right) \quad q V=E_{F n}-E_{F p}$

$$
p n=n_{i}^{2} \exp \left(\frac{E_{F n}-E_{F p}}{k T}\right) \quad \begin{aligned}
& p n>n_{i}^{2} \text { for } V>0 \\
& p n<n_{i}^{2} \text { for } V<0
\end{aligned}
$$

hole density at $x=\mathrm{W}_{\mathrm{Dn}}: \quad p_{n}\left(W_{D n}\right)=p_{n o} \exp \left(\frac{q V}{k T}\right)$
boundary
electron density at $x=-W_{D p}: \quad n_{p}\left(W_{D p}\right)=n_{p o} \exp \left(\frac{q V}{k T}\right) \quad$ conditions

DETAILED DERIVATION CONTINUED

continuity on n-side: $\quad-U-\mu_{p} \mathcal{E} \frac{d p_{n}}{d x}-\mu_{p} p_{n} \frac{d \mathcal{G}}{d x}+D_{p} \frac{d^{2} p_{n}}{d x^{2}}=0 \quad$ with, $\quad U=\frac{p_{n}-p_{n o}}{\tau_{p}}$ in the neutral region (no field): $\quad-U+D_{p} \frac{d^{2} p_{n}}{d x^{2}}=0$
solution $\left(W_{D n} \leq x<\infty\right): \quad p_{n}(x)-p_{n o}=p_{n o}\left[\exp \left(\frac{q V}{k T}\right)-1\right] \exp \left(-\frac{x-W_{D n}}{L_{p}}\right) \quad L_{p}=\sqrt{D_{p} \tau_{p}}$
hole diffusion current at $\mathrm{x}=\mathrm{W}_{\mathrm{Dn}}: \quad J_{p}=-\left.q D_{p} \frac{d p_{n}}{d x}\right|_{W_{D n}}=\frac{q D_{p} p_{n o}}{L_{p}}\left[\exp \left(\frac{q V}{k T}\right)-1\right]$
electron diffusion current at $x=-\mathrm{W}_{\mathrm{Dp}}: \quad J_{n}=\frac{q D_{n} n_{p o}}{L_{n}}\left[\exp \left(\frac{q V}{k T}\right)-1\right]$
total current: $J=J_{p}+J_{n}=J_{0}\left[\exp \left(\frac{q V}{k T}\right)-1\right] \quad$ with, $\quad J_{0} \equiv \frac{q D_{p} p_{n o}}{L_{p}}+\frac{q D_{n} n_{p o}}{L_{n}}$

Illuminated pn junction

- Absorbed photons generate excess minority carriers
- Minority carriers within a diffusion length of the depletion region are swept across the junction by the electric field
\rightarrow electrons and holes are separated and collected

photocurrent J_{L} for uniform generation rate G :

$$
J_{L}=q G\left(L_{p}+W_{D}+L_{n}\right)
$$

Current-voltage characteristics

"Current superposition": J_{L} causes downward shift of $J-V$ curve

$$
\begin{aligned}
& \text { dark: } \quad J=J_{0}\left[\exp \left(\frac{q V}{n k T}\right)-1\right] \\
& \text { light: } \quad J=J_{0}\left[\exp \left(\frac{q V}{n k T}\right)-1\right]-J_{L}
\end{aligned}
$$

Operating modes

Solar cell external parameters

$$
\eta=\frac{P_{\max }}{P_{i n}}=\frac{J_{m} V_{m}}{P_{i n}}=F F \frac{J_{S C} V_{O C}}{P_{i n}}
$$

$P_{\text {in }}$ (normal sunlight): $\sim 100 \mathrm{~mW} \mathrm{~cm}^{-2}$

$$
J_{S C} \approx J_{L}=q G\left(L_{n}+L_{p}+W_{D}\right)
$$

> maximize light absorption (G)
> maximize W \& diffusion lengths

$$
V_{O C}=\frac{k T}{q} \ln \left(\frac{J_{L}}{J_{0}}+1\right)
$$

$>$ minimize saturation current
$>$ maximize photocurrent

$$
F F=\frac{J_{m} V_{m}}{J_{S C} V_{O C}}
$$

$>$ reduce recombination
> reduce series resistance

Silicon pn junction cells

rear contact oxide

$$
\eta=F F \frac{J_{S C} V_{O C}}{P_{i n}}
$$

parameters of good lab cells
$J_{S C}=42 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$
$\mathrm{V}_{O C}=0.72 \mathrm{~V}$
$\mathrm{FF}=0.80$
$\eta=24 \%$

Example of Si cell spectral response

Losses in ideal and real cells

Ideal cells (SR = 1)

1) transparency
2) relaxation (major loss)
3) thermodynamic loss
$\max \mathrm{n}: \sim 33 \%$ at 1 sun

Real cells

1) incomplete absorption (lowers $J_{s c}$)
2) parasitic dark currents (lowers $V_{o c}, F F$)
3) bulk, junction, and surface recombination ($J_{S C}, V_{O C}, F F$)
4) series resistance and leakage currents (FF)

Recombination processes

1) Band-to-band

- Radiative
- Auger

2) Trap assisted

Dominant mechanism(s) depend on semiconductor, cell design, and processing.

- Surface recombination
- Depletion region recombination
- Bulk recombination
- Recombination at metal semiconductor contacts

Beyond silicon: PV design rules

Silicon is successful, deploying rapidly, but still expensive. (indirect gap semiconductor requires thick, high-purity, \$ layers).

Alternative (thin film) technologies must:

1) Be much more economical, at MW-TW scales
2) Absorb sunlight and collect charges with $\sim 100 \%$ efficiency
carrier diffusion length > device thickness > absorption length

$$
\left(L_{n}+L_{p}\right)>d>\alpha^{-1}(\lambda)
$$

3) Collect the carriers at a large voltage ($\left.V_{o c}>E_{g} / q-0.5 V\right)$

$$
E_{g}=1-1.5 \mathrm{eV} \text {, large } \Delta \text { in } E_{F} \text {, low dark current }
$$

PV technologies

Technologies

1. Crystalline Silicon

* Monocrystalline (m-Si)
* Poly- or multicrystalline (poly-Si or mc-Si)

2. Thin Film

* Cadmium Telluride (CdTe)
* Copper-Indium Gallium diSelenide (CIGS)
* Amorphous Silicon (a-Si)
* Thin-Film Silicon (TF-Si)

3. Multijunction Concentrators

* Lattice-Matched (LM)
* Metamorphic (MM)
* Inverted Metamorphic (IMM)

4. Emerging Technologies

* Dye-Sensitized (DSC)
* Organic (OPV)
* Copper Zinc Tin Sulfide (CZTS)
* Other earth-abundant materials
* $\quad 3$ rd generation concepts (QDs, IB)

PV CONVERSION EFFICIENCIES

FIN

[^0]: ${ }^{a}$ The components of the wave vector \mathbf{k} of the electron are given by $k_{x}=n_{x} \pi / L_{x}, n_{x}=1,2$,
 ${ }^{b}$ The electron (or hole) effective mass or masses appropriate to the direction or the plane of motion should be used in $E(\mathbf{k})$ and $\rho_{e}(E)$.
 ${ }^{c}$ Density of electron states per unit energy and unit volume.
 ${ }^{d} n=$ electron concentration $=N / L_{x} L_{y} L_{z}$, where N is the number of electrons confined in the region. Note that $n_{3 d}=n, n_{2 d}=n L_{x}$, and $n_{1 d}=n L_{x} L_{y}$.
 ${ }^{e}$ For $d=0, k_{F}=k_{\max }$, where $k_{\max }$ is the maximum value of $k=\pi\left(n_{x}^{2} / L_{x}^{2}+n_{y}^{2} / L_{y}^{2}+n_{z}^{2} / L_{z}^{2}\right)^{1 / 2}$ for any electron in the quantum dot.

