SEMICONDUCTORS

characterized by:

- 1) a band gap $(E_g) < 3.5 \text{ eV}$
- 2) increasing conductivity with increasing temperature

 $\sigma = \frac{ne^2\tau}{m}$

metals: n is ~ constant; τ decreases with increasing T SCs: τ also decreases; n increases exponentially with T

SCs:
$$n \propto e^{-E_g/2k_BT}$$

623

sp³ SEMICONDUCTORS

- Four valence electrons per atom: Group IV (C, Si, Ge)
- III-V compounds (GaAs, InAs, InSb, GaN)
- II-VI compounds (ZnS, ZnSe, CdSe, HgTe,)
- V.B. → C.B. is p → s, hence allowed dipole transition

sp³ SEMICONDUCTORS

GaAs band structure

PARABOLIC BAND PICTURE

near valleys, bands can always be approximated as parabolas:

Parabolic Band Approximation

good approximation for SCs

- electrons near CBM
- holes near VBM

INTRINSIC and EXTRINSIC SEMICONDUCTORS

pure SC: intrinsic

- negligible impurities
- electrons thermally promoted across gap
- *n* = *p* = *n*_i

doped SC: extrinsic

- impurities form states in gap (e⁻ donors or acceptors)
- electrons easily excited into conduction band from donor.
- n > p ≠ n_i

DOPING IN SEMICONDUCTORS

Adding foreign atoms (dopants) of Group V or Group III to a Group IV semiconductor produces *n*-type or *p*-type material.

DONOR and ACCEPTOR LEVELS

Fig. 10 Measured ionization energies for varies impurities in (a) Si and (b) GaAs. Levels below the gap center are measured from E_v Levels above the gap center are measured from E_c . Solid bars represent donor levels and hollow boxes represent acceptor levels. (After Refs. 29, 31,

ELECTRONIC CHARGE CARRIERS

HOLES

Electrons are the only charge carriers. However, we may, whenever it is convenient, consider the current to be carried entirely by fictitious particles of positive charge that fill all those levels in the band that are unoccupied by electrons. The fictitious particles are called *holes*.

Applied field causes electrons and holes to move in opposite directions, but the current is in the same direction (opposite charges moving in opposite dir.)

It is convention to consider CB currents to be carried by electrons and VB currents to be carried by holes. Be careful not to mix the two concepts in a single band!

FERMI LEVEL SHIFTS WITH DOPING

Carrier Occupancy Energy-band Density of states factors distributions diagram -f(E) E_c E, EF E. E_v f(E)(a) EF above midgap Electrons

The Fermi level moves up when electrons are added and down when electrons are removed, such that $f(E_F) = 1/2$.

With sufficient doping, the Fermi level can move *into* a band, giving a degenerate semiconductor (metallic).

EQUILIBRIUM CARRIER CONCENTRATION

equilibrium \equiv single temp, no applied fields (optical, electric, magnetic) <u>simplest case</u>: direct gap, intrinsic semiconductor ($n = p = n_i$)

$$n(T) = \int_{E_C}^{\infty} g_e(E) f_e(E,T) dE$$

$$p(T) = \int_{-\infty}^{0} g_e(E) [1 - f_e(E, T)] dE$$

in the parabolic approximation:

$$g_{e}(E) = \frac{1}{2\pi^{2}} \left(\frac{2m_{eds}^{*}}{\hbar^{2}}\right)^{3/2} (E - E_{g})^{1/2}$$

for $E > E_{g}$

$$g_e(E) = \frac{1}{2\pi^2} \left(\frac{2m_{hds}^*}{\hbar^2}\right)^{3/2} |E|^{1/2} \quad E < 0$$

$$f_e(E) = \frac{1}{\exp[(E - \mu) / k_B T] + 1}$$

for $E_g > 0.15$ eV and $|E - \mu| \gg k_B T$ the Fermi function reduces to the exponential Boltzmann distribution:

 $f_e(E) \approx \exp[(\mu - E) / k_B T] << 1$ $f_h(E) \approx \exp[(E - \mu) / k_B T] << 1$

substituting these forms of g(E) and f(E) into the integrals gives:

$$n(T) = \frac{1}{2\pi^2} \left(\frac{2m_{eds}^*}{\hbar^2} \right)^{3/2} \int_{E_c}^{E_{max}} e^{(\mu - E)/kT} (E - E_g)^{1/2} dE$$

and $p(T) = \frac{1}{2\pi^2} \left(\frac{2m_{hds}^*}{\hbar^2} \right)^{3/2} \int_{-E_{min}}^{0} e^{(E - \mu)/kT} \left| E \right|^{1/2} dE$

the results are:

$$n(T) = 2\left(\frac{m_{eds}^* k_B T}{2\pi\hbar^2}\right)^{3/2} e^{-(E_C - \mu)/kT} = N_C(T) e^{-(E_C - \mu)/kT}$$
$$p(T) = 2\left(\frac{m_{hds}^* k_B T}{2\pi\hbar^2}\right)^{3/2} e^{-(\mu - E_V)/kT} = N_V(T) e^{-(\mu - E_V)/kT}$$

635

$$n(T) = N_C(T)e^{-(E_C - \mu)/kT}$$
$$p(T) = N_V(T)e^{-(\mu - E_V)/kT}$$

N_c and N_v : effective densities of states at bottom of CB, top of VB

$$E_{g} = E_{C} - E_{V}$$

$$\mu \approx E_{g} / 2$$

$$n(T) = N_{C}(T)e^{-[(E_{C} - \frac{E_{C} - E_{V}}{2})/kT]} = N_{C}(T)e^{-(E_{g}/2kT)} = N_{C}(T)e^{\left(-\frac{E_{C} - E_{F}}{kT}\right)}$$

The concentrations of both electrons and holes increase exponentially with temperature with an activation energy of $E_q/2$.

*The product n(T)p(T) is:

$$n(T)p(T) = N_{C}(T)N_{V}(T)e^{-(E_{C}-\mu)/kT}e^{-(\mu-E_{V})/kT}$$
$$= N_{C}(T)N_{V}(T)e^{-E_{g}/kT} = n_{i}^{2}$$

This product is independent of the position of the Fermi level. In other words, the product is a constant at a given temperature no matter the doping (n-type, intrinsic, or p-type).

it is an example of the LAW OF MASS ACTION

heat
$$\leftrightarrow e^- + h^+$$

K_{eq} = [e][h] = np

For an intrinsic semiconductor:

$$n_{i}(T) = p_{i}(T) = \sqrt{n_{i}(T)p_{i}(T)} = 2\left(\frac{k_{B}T}{2\pi\hbar^{2}}\right)^{3/2} \left(m_{eds}^{*}m_{hds}^{*}\right)^{3/4} e^{-E_{g}/2kT}$$
₆₃₇

FERMI LEVEL, INTRINSIC CASE

$$n = N_C e^{\left(-\frac{E_C - E_F}{kT}\right)} \implies E_C - E_F = kT \ln\left(\frac{N_C}{n}\right)$$

$$p = N_V e^{\left(-\frac{E_F - E_V}{kT}\right)} \implies E_F - E_V = kT \ln\left(\frac{N_V}{p}\right) \qquad \text{subtract the two equations}$$

Jations

n = p

$$E_F = E_i = \frac{E_C + E_V}{2} + \frac{kT}{2} \ln\left(\frac{N_V}{N_C}\right)$$

The Fermi level lies very close to the middle of the bandgap.

Fig. 11 Schematic band diagram, density of states, Fermi-Dirac distribution, and carrier concentrations for (a) intrinsic, (b) *n*-type, and (c) *p*-type semiconductors at thermal equilibrium. Note that $pn = n_i^2$ for all three cases.

TEMPERATURE DEPENDENCE, INTRINSIC

$$n_i = \sqrt{N_C N_V} e^{-E_g/2k_B T}$$

	<u>E_g (eV)</u>
GaAs	1.42
Si	1.12
Ge	0.67

640

TEMPERATURE DEPENDENCE, EXTRINSIC

TEMPERATURE DEPENDENCE of *n*, *p*

Donor ionization occurs when electrons are promoted to conduction band: $D \rightarrow D^+ + e^-$

Acceptor ionization occurs when electrons are promoted from the valence band to the acceptor state: $A + e^- \rightarrow A^-$

TEMPERATURE DEPENDENCE of MOBILITY

$$\mathbf{v}_{\mathrm{drift}} = \mu \mathbf{E} \; ; \; \mu = e \tau \, / \, m^*$$

mobility is the sum of scattering processes, often with one process dominant

$$\mu = \left(\frac{1}{\mu_{lattice}} + \frac{1}{\mu_{impurities}} + \dots\right)^{-1}$$

- ionized impurity scattering $\mu_i \propto T^{3/2}$
- acoustic phonon scattering $\mu_l \propto T^{-3/2}$

other scattering mechanisms are possible (surface, defects)

RT MOBILITIES of SOME SEMICONDUCTORS

Compound	Structure	Bandgap (eV)	e ⁻ mobility (cm²/V-s)	h* mobility (cm²/V-s)
Si	Diamond	1.11 (I)	1,350	480
Ge	Diamond	0.67 (I)	3,900	1,900
AIP	Sphalerite	2.43 (I)	80	
GaAs	Sphalerite	1.43 (D)	8,500	400
InSb	Sphalerite	0.18 (D)	100,000	1,700
AlAs	Sphalerite	2.16 (I)	1,000	180
GaN	Wurtzite	3.4 (D)	300	

TEMPERATURE DEPENDENCE of SIGMA

intrinsic case:

$$\sigma = e(n\mu_e + p\mu_h)$$

$$\rho = \frac{1}{\sigma} \propto e^{E_g/2k_B T}$$

$$\sigma = ne\mu_e$$

complex variation of *n* with T

HALL EFFECT to measure *n*, *p*

A conductor that carries a current in the presence of a transverse magnetic field develops a voltage across the sample normal to both.

force balance gives:

$$V_{Hall} = \frac{1}{qn} \frac{IB}{t}$$

DIRECT / INDIRECT GAP SEMICONDUCTORS

• $k_{\text{photon}} = 2\pi/\lambda \sim 10^7 \text{ m}^{-1}$ negligible compared to B.Z. size $\pi/a \sim 10^{10} \text{ m}^{-1}$

- Transitions appear as vertical lines on E k diagrams
- Phonon needed to conserve momentum for indirect gap materials
- Indirect absorption 2nd order process, therefore low probability ⁶⁴⁷

GaAs band structure

• Direct gap at 1.5 eV

- Very important optoelectronic material
- Strong absorption for $h v > E_g$

Germanium band structure

- Indirect gap at 0.66 eV
- Direct gap at 0.80 eV

ABSORPTION SPECTROSCOPY

Direct versus indirect absorption

- Direct absorption is much stronger than indirect absorption
- •Silicon has **indirect** gap at 1.1 eV
- GaAs has **direct** gap at 1.4 eV

BEHAVIOR NEAR ABSORPTION EDGE

652

FERMI'S GOLDEN RULE

The rate of an optical transition from a single initial state to a final state is given by:

Transition Rate for Single State

 $\left\langle f \mid H' \mid i \right\rangle = \int \psi_f^* H' \psi_i d\tau$

Transition Rate for Given Wavelength

$$\begin{split} \Gamma &= \sum_{f,i} \Gamma_{i \to f} = \sum_{f,i} \frac{2\pi}{\hbar} E_0^2 \left| \left\langle f \mid H' \mid i \right\rangle \right|^2 \delta(E_f - E_i - h\nu) \\ &\approx \frac{2\pi}{\hbar} E_0^2 \left| \left\langle f \mid H' \mid i \right\rangle \right|^2 \sum_{f,i} \delta(E_f - E_i - h\nu) \end{split}$$

Let's assume the state *f* and *i* are conduction and valence band states. Then < f $|H'| i > \rightarrow < c |H'| v >$. We can define the **joint density of states** as

$$\rho_{CV}(hv) = \frac{2}{8\pi^3} \int \delta(E_C(k) - E_V(k) - hv) d^3k$$

• vertical (direct) transitions only

$$\Gamma = \frac{2\pi}{\hbar} E_0^2 \left| \mathbf{H}'_{CV} \right|^2 \rho_{CV} \left(E_C(k) - E_V(k) - hv \right)$$

integral vanishes unless X = $0 \Rightarrow E = hv - E_q$

parabolic bands free electron DOS: $\rho_{CV}(hv) = \frac{1}{2\pi^2} \left(\frac{2m_r^*}{\hbar^2}\right)^{3/2} \left(hv - E_g\right)^{1/2}$

InAs band edge absorption

OPTICAL ABSORPTION EDGES

for allowed transitions in the parabolic approximation:

Direct gap:
$$\alpha(\nu) = A_d (2m_r^*)^{3/2} (h\nu - E_g)^{1/2}$$

Indirect gap:
$$\alpha(\nu) = A_i (h\nu - E_g \pm E_{phonon})^2$$

the prefactors A_d and A_i contain the matrix elements and fundamental constants

OPTICAL SPECTRA

SEMICONDUCTOR BANDGAPS

Bandgaps (in eV) of some semiconductors

TETRAHEDRALLY BONDED MATERIALS							
V	С	Si	Ge	α-Sn			
C Si Ge α-Sn	5.5i,D 2.6i,Z/W	1.1i,D 0.7-1.1	0.7-1.1i 0.74i,D	0.09,D			
III-V	Ν	Р	As	Sb			
B Al Ga In	3.8,W 5.9,W 3.5,W 2.4,W	2.0i,Z 2.5,Z 2.4i,Z 1.4,Z	1.5i,Z 2.2,Z 1.5,Z 0.41,Z	1.7,Z 0.81,Z 0.24,Z			
II-VI	0	S	Se	Те			
Zn Cd Hg	3.4,W 1.3i,R 2.2,O/Rh	3.6,Z/W 2.5,Z/W 2.3,T	2.8,Z/W 1.8,Z/W 06,Z	2.4,Z 1.6,Z 3,Z			
I-VII	F	Cl	Br	Ι			
Cu Ag	2.8i,R	3.4,Z 3.2i,R	3.1,Z 2.7i,R	3.1,Z 3.0,W			

i: Indirect gap
D: Diamond
Z: Zinc Blende
W: Wurtzite
R: Rocksalt
O: Orthorhombic
Rh: Rhombohedral
T: Trigonal
OR: Orthorhombic
distorted rocksalt
M: Monoclinic

Non-tetrahedral bonded materials								
IV-VI compounds								
IV-VI	0	S	Se	Te				
Ge Sn Pb	2.0,i	1.7,OR 1.1,OR 0.29,R	1.1,OR 0.9,OR 0.15,R	0.15,R 2.1,R 0.19,R				
Group VI elements								
VI	S	Se	Te					
	3.6,0	1.9i,T 2.5,M	0.33,T					
Group V elements								
V	Р	As	Sb	Bi				
	.33,0	.17,Rh	.10	.015				

EXCITONS

- The annihilation of a photon in exciting an electron from the valence band to the conduction band in a semiconductor can be written as an equation: $hv \rightarrow e^- + h^+$
- Since there is a Coulomb attraction between the electron and hole, the photon energy required is lower than the band gap by this attraction (giving bound states).
- To correctly calculate the absorption coefficient we have to introduce a two-particle state consisting of an electron attracted to a hole, known as an **exciton** (a quasiparticle).

WANNIER and FRENKEL EXCITONS

Free (Wannier)

radius >> a small binding energy moves freely through crystal SCs of large dielectric constant

Tightly-bound (Frenkel) radius ~ *a* large binding energy localized on one lattice site

solids of small dielectric constant

- Excitons represent *the elementary excitation* of a semiconductor. In the ground state the semiconductor has only filled or empty bands. The simplest excitation is to excite one electron from a filled band to an empty band, so creating an electron and a hole
- Excitons are *neutral* overall but carry an *electric dipole moment* and therefore can be excited by *either a photon or an electron*

HYDROGENIC MODEL OF EXCITONS

Bohr atom picture, modified with effective mass and dielectric constant of crystal

Hydrogen Atom:

Circular orbit: centripetal force = Coulombic force

$$\frac{m_e v^2}{r} = \frac{e^2}{4\pi\varepsilon_0 r^2}$$

Angular momentum: $m_e vr = n\hbar$

$$r_n = \frac{4\pi\varepsilon_0 n^2\hbar^2}{m_e e^2} = n^2 a_0$$

 r_1 = Bohr radius = a_0 = 0.529 Å

$$E_{n} = -\frac{m_{e}e^{4}}{2(16\pi^{2}\varepsilon_{0}^{2})\hbar^{2}n^{2}} = -\frac{R}{n^{2}}$$

R (*Rydberg*) = 13.606 eV

HYDROGENIC MODEL OF EXCITONS

Excitons: 1. Use dielectric constant of crystal

$$U(r) = -\frac{e^2}{4\pi\varepsilon\varepsilon_0 r}$$

 r_n

 E_n =

2. Use effective reduced mass $\frac{1}{m_r^*} = \frac{1}{m_e^*} + \frac{1}{m_h^*}$

Exciton Bohr Radius:

 $=\frac{4\pi\varepsilon\varepsilon_0n^2\hbar^2}{m_r^*e^2}=\frac{n^2\varepsilon m_e}{m_r^*}a_0$

 $r_{ex} = \frac{\varepsilon m_e}{m_r^*} 0.529 \text{ A}$

Binding Energy:

 $\left|\frac{m_r^*}{m_e \varepsilon^2}\right| \frac{R}{n^2} = \frac{R_X}{n^2} \quad (65)$

TOTAL EXCITONIC ENERGY

if referenced to the top of the valence band:

$$E_{nlm}(K) = E_g + \frac{\hbar^2 K^2}{2M} - \left(\frac{m_r^*}{m_e \varepsilon^2}\right) \frac{R}{n^2}$$
exciton kinetic energy (translational motion of neutral quasiparticle) binding energy

Exciton Parameters for Several SCs

Semiconductor	E _g (eV)	(0)ع	m_r^* / m_e	E _B (meV)	r _{ex} (nm)
			$(m_e^* / m_e; m_h^* / m_e)$		
Si	1.11	11.8	0.190	18.6	3.28
Ge	0.67	16	0.132	7.01	6.41
GaAs	1.42	13.2	0.0616 (0.067, 0.76)	4.81	11.3
InSb	0.163	17.7	0.0135	0.586	69.4
CdSe	1.74		(0.13, 0.45)	15	5.2
Bi	0		0.001	small	> 50
ZnO	3.4		(0.27,?)	59	3
GaN	3.4		(0.19, 0.60)	25	11

FREE EXCITON ABSORPTION

 $R_{\rm X}$ = exciton binding energy

• Hydrogenic series of lines satisfying : $hv = E_g - R_X / n^2$

• enhanced absorption for $hv > E_g$

• only observed when $T \leq (R_{\rm X}/k_{\rm B})$

EXCITONS in BULK GaAs

FRENKEL EXCITONS

QUANTUM CONFINEMENT IN NANOSTRUCTURES

Materials with at least one dimension on the scale of the exciton diameter are said to be **quantum confined**. The electronic wavefunction, energy levels, and DOS will depend on the dimension(s).

dot:
$$E_g(L_x, L_y, L_z) = E_{g0} + \frac{h^2}{8m_r^*} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)$$

bulk gap 1
3D confinement

assumptions: parabolic bands, independent electrons, infinite barriers

	Dimensionality						
	d = 0 (Quantum Dot)	d = 1 (Quantum Wire)	d = 2 (Quantum Well)	d = 3(Bulk)			
$\overline{\psi_{\mathbf{k}}(\mathbf{r})^{a}}$	$A\sin k_x x(\sin k_y y)(\sin k_z z)$	$A\sin k_x x(\sin k_y y)e^{ik_z z}$	$A(\sin k_x x)e^{i(k_y y+k_z z)}$	$Ae^{i(k_xx+k_yy+k_zz)}$			
$E(\mathbf{k})^{b} = E(k_{x}) + E(k_{y}) + E(k_{z}); n_{x}, n_{y}, n_{z} = 1, 2, 3, \dots$	$\frac{h^2}{8m_e^*} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)$	$\frac{\hbar^2}{8m_e^*} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\right) + \frac{\hbar^2 k_z^2}{2m_e^*}$	$\frac{\hbar^2 n_x^2}{8m_e^* L_x^2} + \frac{\hbar^2 (k_y^2 + k_z^2)}{2m_e^*}$	$\frac{\hbar^2 (k_x^2 + k_y^2 + k_z^2)}{2m_e^*}$			
$ ho_e(E)^{b,c}$	Discrete states	$rac{\sqrt{2m_e^*}}{\pi \hbar L_x L_y} E^{-1/2}$	$rac{m_e^*}{\pi \hbar^2 L_x}$	$rac{1}{2\pi^2}\left(rac{2m_e^*}{\hbar^2} ight)^{3/2}E^{1/2}$			
$k_F{}^d$	e	$rac{\pi n L_x L_y}{2}$	$\sqrt{2\pi n L_x}$	$(3\pi^2 n)^{1/3}$			

The first of the first of the first of the solution of the first of th	FABLE	11	.5	Properties	of	Electrons	in	Solids	of	Reduced	Dimensi	ionality	,
--	--------------	----	----	------------	----	-----------	----	--------	----	---------	---------	----------	---

^aThe components of the wave vector **k** of the electron are given by $k_x = n_x \pi/L_x$, $n_x = 1, 2, ...$

^bThe electron (or hole) effective mass or masses appropriate to the direction or the plane of motion should be used in $E(\mathbf{k})$ and $\rho_e(E)$.

^cDensity of electron states per unit energy and unit volume.

 ${}^{d}n$ = electron concentration = $N/L_x L_y L_z$, where N is the number of electrons confined in the region. Note that $n_{3d} = n$, $n_{2d} = nL_x$, and $n_{1d} = nL_x L_y$. e For d = 0, $k_F = k_{\text{max}}$, where k_{max} is the maximum value of $k = \pi (n_x^2/L_x^2 + n_y^2/L_y^2 + n_z^2/L_z^2)^{1/2}$ for any electron in the quantum dot.

672

Photoluminescence spectroscopy

sample in cryostat

Photoluminescence (PL) spectroscopy

• fixed frequency laser, measure spectrum by scanning spectrometer

PL excitation spectroscopy (PLE)

- detect at peak emission, vary laser frequency
- effectively measures absorption

Time-resolved PL spectroscopy

- short pulse laser + fast detector
- measure lifetimes, relaxation processes

Photoluminescence

- Excite using laser with photon energy $> E_{g}$
- electrons and holes relax to the bottom of their bands
- thermal distributions formed according to statistical mechanics
- emission from $E_{\rm g}$ to top of carrier distributions

Direct gap materials

- Strong emission at the band gap
- most III-V and II-VI semiconductors
- linewidth $\geq k_{\rm B} T$

Indirect gap materials

- Low emission probability (2nd order process)
- Long radiative lifetime \Rightarrow low radiative quantum efficiency
- diamond, silicon, germanium, AlAs

<u>Classical (Boltzmann)Statistics</u> 10³ PL intensity (a.u.) GaAs T = 100 K10² $k_{\rm B}T = 8.6 \,{\rm meV}$ 1.50 1.52 $k_{\rm B}T$ $E_{g} = 1.501 \text{ eV}$ E_{\cdot} Fermi's golden rule 1.50 1.49 1.52 1.53 1.51 Rate $\propto |\mathbf{M}|^2 \rho(hv)$ Energy (eV)

- Boltzmann statistics: $f(E) \propto \exp(-E/k_{\rm B}T)$ (occupancy factors)
- $I(E) \propto \text{Density of states} \times f_{e}(E) f_{h}(E) \propto \left(h\nu E_{g}\right)^{1/2} e^{-h\nu/k_{B}T}$
- PL rises sharply at $E_{\rm g}$, then decays exponentially. Linewidth ~ $k_{\rm B}T$

BUILDING BLOCKS OF SEMICONDUCTOR DEVICES

- p-n junctions
- metal-semiconductor junctions
- metal-insulator-semiconductor (MIS) capacitors

Reading: AM Ch. 29

THE MOSFET

(metal-oxide-semiconductor field-effect transistor)

amplification, switching, logic

BASIC EQUATIONS FOR DEVICE PHYSICS

<u>in 1D:</u>

Poisson's Equation:
$$-\frac{d^2\psi}{dx^2} = \frac{d\mathcal{E}}{dx} = \frac{\rho}{\mathcal{E}_s} = \frac{q}{\mathcal{E}_s} \left[p + N_D^+ - n - N_A^- \right]$$

Drift-Diffusion Equations:

$$J_n = q \mu_n n\mathcal{E} + q D_n \frac{dn}{dx}$$

$$J_{p} = q \mu_{p} p \mathcal{E} - q D_{p} \frac{dp}{dx}$$

Continuity Equations:

$$\frac{\partial n}{\partial t} = G_n - U_n + \frac{\nabla J_n}{q} \qquad \qquad \frac{\partial p}{\partial t} = G_p - U_p - \frac{\nabla J_p}{q}$$

CONTINUITY

$$\frac{\partial n}{\partial t} = G_n - U_n + \frac{\nabla J_n}{q}$$

682

THE PN (HOMO)JUNCTION

B. Van Zeghbroeck, 2011.

ABRUPT PN JUNCTIONS

LINEARLY-GRADED PN JUNCTIONS

more realistic doping profile, same basic result and device physics

SIMPLE DERIVATION OF CURRENT-VOLTAGE CHARACTERISTICS

two electron currents:

1) generation current $(J_{gen,e})$ - electrons from p to n side

2) recombination current $(J_{rec,e})$ - electrons from n to p side

 $J_e^{rec} \propto e^{-q(\phi-V)/kT}$

at equilibrium (V = 0): $J_e^{rec} = J_e^{gen} = e^{-q\phi/kT}$ so at any voltage V: $J_e^{rec} = J_e^{gen} e^{qV/kT}$ total electron current: $J_e = J_e^{rec} - J_e^{gen} = J_e^{gen} (e^{qV/kT} - 1)$ total current (e + h): $J = J_e + J_h = (J_e^{gen} + J_h^{gen})(e^{qV/kT} - 1)$

DIODE AT EQUILIBRIUM

Shockley ideal diode equation (1949):

$$J = J_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right]$$

rectification: current flows preferentially in one direction

REVERSE BIAS

$$J = J_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right]$$

V < 0 (reverse bias)

FORWARD BIAS

$$J = J_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right]$$

Only the diffusion current changes significantly with bias. Diffusion dominates in forward bias.

DETAILED DERIVATION OF CURRENT-VOLTAGE CHARACTERISTICS

derivation of the Shockley ideal diode equation (1949):

at equilibrium:
$$n = n_i \exp\left(\frac{E_F - E_i}{kT}\right)$$
 $p = n_i \exp\left(\frac{E_i - E_F}{kT}\right)$ $pn = n_i^2$
with bias V: $n \equiv n_i \exp\left(\frac{E_{Fn} - E_i}{kT}\right)$ $p \equiv n_i \exp\left(\frac{E_i - E_{Fp}}{kT}\right)$ $qV = E_{Fn} - E_{Fp}$

$$pn = n_i^2 \exp\left(\frac{E_{Fn} - E_{Fp}}{kT}\right) \qquad pn > n_i^2 \text{ for } V > 0$$
$$pn < n_i^2 \text{ for } V < 0$$

hole density at x =
$$W_{Dn}$$
: $p_n(W_{Dn}) = p_{no} \exp\left(\frac{qV}{kT}\right)$
boundary
conditions
electron density at x = $-W_{Dp}$: $n_p(W_{Dp}) = n_{po} \exp\left(\frac{qV}{kT}\right)$

DETAILED DERIVATION CONTINUED

continuity on *n*-side:
$$-U - \mu_p \mathcal{E} \frac{dp_n}{dx} - \mu_p p_n \frac{d\mathcal{E}}{dx} + D_p \frac{d^2 p_n}{dx^2} = 0$$
 with, $U = \frac{p_n - p_{no}}{\tau_p}$

in the neutral region (no field): $-U + D_p \frac{d^2 p_n}{dx^2} = 0$

solution
$$(W_{Dn} \le x < \infty)$$
: $p_n(x) - p_{no} = p_{no} \left[\exp\left(\frac{qV}{kT}\right) - 1 \right] \exp\left(-\frac{x - W_{Dn}}{L_p}\right)$ $L_p = \sqrt{D_p \tau_p}$

hole diffusion current at x =
$$W_{Dn}$$
: $J_p = -qD_p \frac{dp_n}{dx}\Big|_{W_{Dn}} = \frac{qD_p p_{no}}{L_p} \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$

electron diffusion current at x = -W_{Dp}: $J_n = \frac{qD_n n_{po}}{L_n} \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$

total current:
$$J = J_p + J_n = J_0 \left[\exp\left(\frac{qV}{kT}\right) - 1 \right] \quad \text{with,} \quad J_0 \equiv \frac{qD_p p_{no}}{L_p} + \frac{qD_n n_{po}}{L_n}$$

Illuminated pn junction

- Absorbed photons generate excess minority carriers
- Minority carriers within a diffusion length of the depletion region are swept across the junction by the electric field
 → electrons and holes are separated and collected

photocurrent J_L for uniform generation rate G: $J_L = qG(L_p + W_D + L_n)$

Current-voltage characteristics

"Current superposition": J_L causes downward shift of J-V curve

dark:
$$J = J_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right]$$

light: $J = J_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right] - J_L$

Operating modes

Solar cell external parameters

$$\eta = \frac{P_{\max}}{P_{in}} = \frac{J_m V_m}{P_{in}} = FF \frac{J_{SC} V_{OC}}{P_{in}}$$

P_{in} (normal sunlight): ~100 mW cm⁻²

$$J_{SC} \approx J_L = qG(L_n + L_p + W_D)$$

maximize light absorption (G)
maximize W & diffusion lengths

$$V_{OC} = \frac{kT}{q} \ln\left(\frac{J_L}{J_0} + 1\right)$$

> minimize saturation current
> maximize photocurrent

Silicon pn junction cells

Example of Si cell spectral response

Losses in ideal and real cells

Ideal cells (SR = 1)

- 1) transparency
- 2) relaxation (major loss)
- 3) thermodynamic loss

```
max n: ~33% at 1 sun
```


Real cells

- 1) incomplete absorption (lowers J_{SC})
- 2) parasitic dark currents (lowers V_{OC} , FF)
- 3) bulk, junction, and surface recombination (J_{sc} , V_{oc} , FF)
- 4) series resistance and leakage currents (FF)

Recombination processes

Dominant mechanism(s) depend on semiconductor, cell design, and processing.

- Surface recombination
- Depletion region recombination
- Bulk recombination
- Recombination at metal semiconductor contacts

Beyond silicon: PV design rules

Silicon is successful, deploying rapidly, but still expensive. (indirect gap semiconductor requires thick, high-purity, \$ layers).

Alternative (thin film) technologies must:

- 1) Be much more economical, at MW-TW scales
- 2) Absorb sunlight and collect charges with ~100% efficiency

carrier diffusion length > device thickness > absorption length $(L_n + L_p) > d > \alpha^{-1}(\lambda)$

3) Collect the carriers at a large voltage ($V_{OC} > E_g/q - 0.5 V$)

 $E_q = 1-1.5 \text{ eV}$, large Δ in E_F , low dark current

PV technologies

Jraanic

nc-CIGS

Technologies

- 1. Crystalline Silicon
 - Monocrystalline (m-Si)
 - * Poly- or multicrystalline (poly-Si or mc-Si)

2. Thin Film

- * Cadmium Telluride (CdTe)
- * Copper-Indium Gallium diSelenide (CIGS)
- * Amorphous Silicon (a-Si)
- * Thin-Film Silicon (TF-Si)
- 3. Multijunction Concentrators
 - * Lattice-Matched (LM)
 - Metamorphic (MM)
 - * Inverted Metamorphic (IMM)

4. Emerging Technologies

- * Dye-Sensitized (DSC)
- * Organic (OPV)
- * Copper Zinc Tin Sulfide (CZTS)
- Other earth-abundant materials
- 3rd generation concepts (QDs, IB)

PV CONVERSION EFFICIENCIES

Best Research-Cell Efficiencies

FIN